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CHAPTER I

INTRODUCTION

The problems of determining theoretically the conditions under
which a thin circular shell under axial compression becomes unstable,
and of determining the postbuckling behavior of the shell have been of
interest to enginéers and scientists for nearly sixty years.

The first theoretical work on this problem was done by such

(1) (2) (3)

noted investigators as Lorentz , Timoshenko , Southwell , and
Flﬁgge(u). They found what might be called the classical or Euler
buckling load. This is the load at which an equilibrium configuration
differing from the initial configuration by an infinitesimal displace-
ment can be found. In other words, it is the load at which a bifurcation
in the load-axial deflection curve exists.

When a cylindrical shell buckles, the change in the potential
energy of the shell can be expressed as a sum of second, third, and
fourth order terms in the radial displacement, w, . The equilibrium
equation in the radial direction can be found by setting the first
variation of this additional potential energy equal to zero. If only
the second order terms are used, the resulting equilibrium equation

is linear. The resulting system is homogeneous, and the lowest value

of axial load for which a nontrivial soclution exists is the Euler load,

Prp . In terms of force per unit length of shell circumference this is
given by
Ehl c
PE :Z_Y—é" 2. 605 5 (\)=.30), (1.1)



2.

(For a solution of the linear problem, see Timoshenko and Gere(s),)
Experimental work, however, indicates that cylindrical shells
under axial compression fail at values of axial stress only one tenth
to nine tenths the Euler load. Along with this sharp reduction in the
actual strength of the shell a wide range of scatter is also observed.

This is indicated in Figure 1.1. (Donnell and Wan(i*).)

.00
RANGE OF EXPERIMENTAL DATA
A 50
B \
j’
0
o 1600 5560 3900
R
h

Figure 1.1. Range of Experimental Values for the
Buckling Load.

Thin cylinders under axisal load buckle either gererally into
a pattern consisting of a large number of circumferential and axial rows
of diamond-shaped buckles, or they buckle locally into isoclated buckles
or into only a few axial rows of circumferential buckles. As buckling
progresses the number of circumferential buckles (n) decreases, the
value of n being near ten for cylinders which buckle in the manner
described. The final buckled shape is ohserved to consist of regions
of small curvature connected by ridges and valleys of very high curvature.

(6)

This is easily seen in the photographs shown by Fung and Sechler and by
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Lundquist(7). This is the postbuckled shape which is analyzed in this
work.

An explanation of the discrepancy between theory and experiment
has been attempted by several investigators. Donnell(B), in 1934, was
the first to use a finite-deflection analysis which included the effect
of initial imperfections. Unfortunately his work was not general enough
and attracted therefore only limited attention. Von Kirmén and Tsien(g),
in 1941, extending the idea of Donnell, also considered finite displace-
ments from the prebuckled cylinder. They found equilibrium states which
could exist at values of axial stress much less than the buckling load.

(10)

This method was refined and extended among others by Leggett and Jones )

(12) (12) | ond finally by Almroth(*3) in 1963. Almrotn

Michielson , Kempner
showed that a possible equilibrium state can exist when the external load
is only ten per cent of the Euler load.

An answer to the question of how the shell reaches its post-
buckled state, which seems to account for the wide scatter in experi-

(14)

mental data, was put forth by Donneli snd Wan in 1950. They postu~
lated an initially imperfect shell, the initial imperfections being of
the same form as the buckled shape. They determined that the shell was
very sensitive to these imperfections. A series of load-deformation
curves were found for various values of the imperfection parameter.
(See Figure 1.2.)

Koiter(lS) demonstrated the extreme sensitivity of cylindrical
shells to imperfections by showing that the curve giving the buckling

load as a function of the imperfections amplitude may have infinite slope

as the latter approaches zero.
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__Average Stress
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Figure 1.2. Effect of Shell Imperfections on the Buckling Behavior.

Several investigators have investigated the dynamics of the

postbuckling problem, such as Kadashevich and Pertsov(l6)

, Agamirov and
Volmir(lY), and Yao(lB). The results of these studies have shed no
significant light on the basic controversy and are therefore not dis-
cussed here any further.

It is of significance in conrection with the present work that
none of the previous investigations cited here represent exact solutions

to the relevant shell equations, whose nonlinearity has made an exact

analysis prohibitively difficult. Instead, the approach which has been
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utilized most widely to obtain approximate solutions has been to set up
an expression for the potential energy and to minimize that expression
within an aggregate of kinematically admissible deflection functions.
This is, of course, a permissible scheme, provided that the number of
function considered is sufficiently large and the functions themselves
represent good approximations. In particular, if the actual deflected
surface is sufficiently smooth, an aggregate of trigonometric functions
is usually workable. If sharp discontinuities in the functions or

their derivatives occur convergence becomes slow or altogether question-
able.

This phenomenon has been observed in the present case, in
which the addition of ever increasing numbers of terms has led to
approximate solutions of formidable algebralc complexity without dis-
playing satisfactory convergence as the deflections become large. It
may be conjectured that this is a basic shortcoming of the method selected.
Indeed, the observed presence of diamond-shaped buckles separated by
sharp creases (or internal "poundary layers", as discussed later on)
raises the question of the suitability of the representation by an
aggregate of simple trigonometric waves.

The method employed herein is also approximate, but in a dif-
ferent sense. Energy techniques are not employed. Instead, the shell
equations are solved approximately through perturbation expansion in
terms of a small parameter which is related to the thickness of the shell.
Since this parameter (after a number of order-of-magnitude assumptions

based on observed behavior) appears as the coefficient of the highest
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derivatives in the equations, the expansion is singular and gives rise to
boundary layers separating "fields" of relatively smooth buckles of vanish-
ing Gaussian curvature. Aside from certain inaccuracies in satisfying some
of the kinematic boundary conditions (believed to be of minor significance),
the solutions obtained, though not unique, may therefore be considered
exact in the limit, that is, as the shell thickness approaches zero.

The idea of using a boundary layer approach to problems in
shell stability is not new. Friedrichs(l9), in 1941, investigated the
problem of the buckling of a spherical cap by using a boundary layer
analysis.l Other early work using boundary layer analyses in the investiga-
tion of the behavior of structures was done by Friedrichs and Stoker(eo’el)
in connection with the problem of a circular plate under uniform radial
compression. More recently the development of a boundary layer in a flat

plate with free edges has been investigated by Fung and Wittrick(22)

and
by Masur and Chang.(23) There are also examples of boundary layer analyses
in the investigation of problems of linear shell theory. See, for example,

(24,25) (26)

the recent work of Reiss, and Johnson in the treatment of the
linear problem of a cylindrical shell under axial compression.

The development of internal boundary layers in cylindrical shell
buckliné is suggested by the observed buckled shape. The boundary layers
are those regions which include the valleys and ridges which delineate
the individual buckles. It is expected that there will be large bending
strains in the boundary layers, but that the bending will be almost
negligible in the "field" (the region remote from the boundary layers).

This behavior has been noted by several investigators. (For example, see

Fung and Sechler(6)).
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The present investigation is in the spirit of von Karmén and
Tsien in that equilibrium states for the postbuckled shell are sought.
An initially perfect cylinder is postulated, although the results can
also be shown to be valid for an imperfect cylinder. Another feature
of this work is that by considering each buckle as a shallow shell
both the local and general buckling problem are investigated simulta-

neously.



CHAPTER II

DERIVATION OF THE SHELL BEQUATIONS

Consider a shell of constant thickness, h , whose initial

middle surface is defined by the relationship
W=Wi(xs), (2.1)

The coordinates x and s are chosen to lie in a reference plane I; ;
the distance of the middle surface from II; being W . W is measured

in the 2z direction which is normal to 1; (Figure 2.1).

/ Prebuckled Cylinder
W= W(x,s)

Figure 2.1. Axial Section Showing the Prebuckled Panel.

It is assumed that for the shell considered

%'"_*« 1 (2.2)
-8-
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in which £ 1is a representative shell dimension and Wiax 1s the
maximum rise of the shell from Hl . This type of shell is commonly
called a shallow shell. Another way of considering the shell is to
think of it as a plate with an initial deflection.

The Love-Kirchoff assumptions concerning the deformations
of the shell are made. The shear deformation is therefore neglected.

Also, the volume element of the shell is taken to be

dv =dx ds dz (2.3)

which is consistant with Love's first approximation and the usual
shallow shell theory.

It follows from the Love-Kirchoff assumptions and the assump-
tion (2.2) that the displacement components of a general point in terms

of the middle surface displacement components are

A
Ug, (X,S,Z\ = U —ZW}q

Q = X,s (2.%)

A
W (x,5,2) = W Y,

in which the tangential displacements u, and the normal displacements
w of the middle surface are functions of x and s only. (The summa-
tion convention is adopted for the subscripts «a, B and y ; the range of

subscripts is indicated in (2.4%).)



=10~

For the deformations being considered the displacement components
ua are taken to be of an order-of-magnitude smaller than the displacement

component w , that is,

w ~0(nh)® v

(2.5)
qu'“‘()(h) /5

in which n 1is an integer such that
Wiax ~ Qlnh) . (2.6)

As a consequence of the order-of-magnitude assumptions which
have been made a shallow shell theory with deflections of the order-of-
magnitude of the shell rise is being considered. For a circular
cylindrical shell the shallow shell being considered is one of the
diamordsshaped buckled panels. For such a shell n 1is taken to be
the number of circumferential buckles.

The strains are expressed in terms of the middle surface dis-

placements as follows,

Eeo= T LU +Uns +w e Whalw s W W Wee 22 w00 ). 22D

In the usual theory in which w~O0(h) the terms W, W,g and

2
zw,aB are both O(E;) . For the displacements considered here, however,
£ 2
. h . 2h .
ZW’OB is O(nzﬁ) while Vg Wig 1s O(n ZE) ;3 thus the term 2V 508 is

* The expression wnO(nh) should be interpreted to mean that maximum
values of the displacement approximately n times the shell thickness
are expected.
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of an order-of-magnitude smaller than the other terms. However, because
of the higher derivatives involved this term becomes significant in a
boundary layer whereas other terms which have been neglected in (2.7)
and which are of similar order to the bending term involve lower order
derivatives and remain small when compared to the membrane terms, even
in the boundary layers.

For a given load the difference in the potential energy between

the buckled and unbuckled state is given by the expression
A A
A A\ N A
- Q []
V'[[’Z:\eeug*'%twﬁugjdv "IT U dS (2.8)
v S
in which TQB are the additional stress components which arise during
A
buckling and TaB are the prebuckling stress components. T 1is a vector
A
which represents the applied surface tractions and U 1s a vector which
represents the displacements through which the tractions act.
The work done by the external tractions is equal to the work

of the prebuckling stresses acting through the linear portion of the

additional strains. The potential energy change can therefore be written
V =Vw +VB *Vrn (2-9)

in which

Vi “"E [N:p Wia Wi dS. (2.10)



=
ll
I‘Ql':j

‘h.(‘" WiagWigg T YV Wog W;ee} dS (2.11)

Vio= (Nea €ue 45

(2.12)

1\13B and Ny, are defined by

2
A
N:e. j T: dz

(%

In obtaining (2.11) it has been assumed that the additional

i

~Nix

(2.13)

"l)

Nee

strains are related to the additional stresses by Hooke's law for plane

stress, that is,

A
Taa =(|__T;)z)[(|"\))é\dﬁ + \)6“80‘8]_ (2.14)

The additional stress resultants in terms of the middle

surface displacements for a material with a stress strain law as glven

in (2.14) are
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Ne((s = (I?Sz) [(IE\J) (Ug\,@"'uﬁﬂ\ +(W+W)Ids (W+W.)/6 —Vvlof Wﬂ

+%(ZUY,¥ +(W+W)/¥(W+W),y“\N)YW()&G:I, (2.15)

The additional middle surface strains are

Eo\F:'\?[Uq’a‘\‘u‘g)u "‘(W'l'W),c( (W+W);(3-W;o{ W&] . (2.16)

The equilibrium equations are obtained by equating the first

variation of the additional potential energy to zero, that is,

SV =0
(2.17)
s,V =0.
These lead to
Ndﬁ/d = Q (2.18)
va/o(dﬁp “N:mVVm;s "Nua(W*W)/ue =0. (2.19)

Since Ndﬁ » rather than Uy have been selected as dependent

variables an additional equation (compatibility) must be added for
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completeness. This equation is

Nm’m —N““"““" =‘Ezh [(W+W))°(ﬁ (W+W)/dn -(w +W}/qd (W+W)/ﬁﬁ

W o Wi *Waa Wen . (2.20)

The governing set of equations for the shallow shell thus consists of
(2.18), (2.19), and (2.20).

Consider now a segment of a circular cylindrical shell. The
original shell middle surface segment can be approximated by a para-
bola for segments which can be considered as shallow shells. The

initial shape is given by the relation

~

Wix,s) = =Gy ++ 25 | (2.21)

7
N

g

The prebuckling state of stress is taken to be one of uniform axial

compression:
Nex =P Nys = O N, =C, (2.22)

Equations (2.18) are satisfied identically if a stress func-

tion F 1is introduced by means of

Nmzﬁs Nm:*ﬁm Nﬂ:Fﬂx- (2.23)
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In view of (2.21), (2.22), and (2.23), the shell equations are

D\7\7v +PW,xx"F,ssW,xx +2 F/sz/xs ‘Exx (W,ss +JR'3 =0
(2.24)

qu = Eh(Wlis "W;xxW;ss"'l[? W/xx) =0.

Equations (2.24) are the Donnell equations for a cylindrical shell(8’27).
These equations are also Marguerre shallow shell equations for the
. . . (28)
special case of a cylindrical panel .
Equations (2.24) are usually consistant only for deflections
of the order of the thickness of the shell. However, for modes of

deformation which involve boundary layers these equations can be used

for larger deflections.



CHAPTER III

SOLUTION OF THE SHELL EQUATIONS

3.1. Non-dimensional Form of the Shell Equations

The experimentally observed buckled shape for a thin cylindri-
cal shell loaded in axial compression consists of a series of triangular
shaped regions of nearly zero curvature separated by ridges and valleys
of large curvature. These triangular regions form a set of n circum-
ferential buckles. These buckles can extend over the entire lateral
surface of the shell, or there may be only a few axial rows of buckles
(6’7). In the following analysis a typical buckle will be considered.

A drawing of an idealized buckle is shown in Figure 3.1. The
reference plane, II; , 1is chosen so that the point (:) and (:) lie

in T, when the shell has buckled. The lines , , @ ,

and <:> represent ridges, while the line <::> represents a
valley. The triangular fields and @ are assumed to
retain some curvature in the buckled state. The unbuckled shell is
shown by means of the dashed curve, the buckled shell by means of the

solid curves. The parameter k is the ratio of the curvature of a

buckled panel to the curvature of the original cylinder. k = 0 means
that the "fields" are flat. k = 1 means there has been no deforma-
tion. aj, ap, a3, and a), are parameters which aide in the descrip-

tion of the buckled panel. They are functions of R , k , and n .
The assumed buckled shape for the shell is almost developable.
This fact can be rationalized if it is assumed that the buckled shape

will be such as to minimize the potential energy of the shell. The

-16-
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Section AA

Figure 3.1. Geometry of a Buckled Panel.
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energy associated with membrane strains is proportional to the shell
thickness, while the energy of bending is proportional to the cube of
the shell thickness. Thus, since shells are of small thickness, the
buckled shape will be one which minimizes the membrane strain energy,
i.e., a developable surface. The developability of the buckled surface
has been noted and discussed by several investigatorsa(29’3o)

The assumption of developability allows the deformation para-
meters ap, a3, and al to be expressed in terms of k , n , and the
undeformed shell parameters R and h by using geometrical considera-
tions alone (Appendix A). The results of doing this under the assump-

tion that the angle is small are

a,waqw(\-ka)é—'i

N
Q3 ~ (z+ﬁ)-g—-5 (3.1.1)
2
CLA.‘Q’iﬂ II?E;.

The membrane stresses in the regions remote from the boundaries
are assumed to be uniform axial tension in the buckled state,. A tensile
stress is necessary for equilibrium. (See Appendix B).

Equation (2.24) can be put in nondimensional form in the
following way. Because of the order of magnitude assumption concerning
w(x,s) and W(x,s) , let

W= nhY

(3.1.2)
w = nhy .
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The initial stress P 1is taken to be similar in magnitude to the

buckling load as obtained from a linear analysis, that is,

P~ O(%) (3.1.3)

The radius of the undeformed shell is not, in general, representative
of the deformed shape; rather, a more realistic choice of a represent-
ative of the deformed shape; rather, a more realistic choice of a

representative length is made by means of

f=nRh. (3.1.4)

In terms of £ rather than R (3.1.3) becomes

— 3
P~O(9—§zb) . (3.1.5)

(3.1.6)

With the assumption that differentiation with respect to ¢ and o
does not significantly change the magnitude of the function being dif-

ferentiated and also on the basis of (3.1.5), let

P

3

%P (3.1.7)

i
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Finally, define a nondimensional stress function f by means of

F=nERY. (3.1.8)

This choice implies that the additional stresses are of the same order

as the original stresses.

let

- = A
az=nh°‘z /U:?;

— S
O.3=r\h0(3 §= n

(3.1.9)

Ay = nhoy Y*= 20-v7)

i

2R =%+ aq > 4
= Vi s esme+ 8]

and assume that the number of circumferential buckles is of such a

magnitude that
3

DR“NO(I) , (3.1.10)

This assumption can be Justified by experiment. The tests of
Lundquist(7), Donnell(l7), and Tennyson(3l) show that, if only the

final buckled shape is considered, for all of the cylinders tested

3 2 .
231&51. is a better choice than Eﬁgzél- (Appendlx C). The assump-
2
tion Eﬁylzzl. can be used to show the consistancy of the Donnell

equations for radial deflections of the order of the shell thickness

(consistancy in the sense that all terms are of the same magnitude),
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It is also noteworthy that the number of buckles decreases as buckling
proceeds.
By the use of (3.1.2) through (3.1.9) Equations (2.24) can

be written

Szxzv§ *(’S‘ﬂo'a')Y)gg *E‘G)Efyiﬁﬂ' - )EEKY)“H):O
(3.1.11)

82 74-F _y)zga"fY;gg (Y)d‘d‘ + ’) =Q.

Equations (3.1.11) are the governing shell equations in non-
dimensional form. If the order-of-magnitude assumptions which have

been made are valid then all terms except those with coefficients 62

2 2

22
and & y are near one in magnitude. % and 527 are significantly

less than one. The terms in (3.1.11) which are multiplied by 62 and
22
&5y are those exhibiting the highest derivatives. This is typical

of equations which describe problems for which a boundary layer type

solution is expected.(32)
To solve Equation (3.1.11) consider only the region (012)

and its boundaries. Take the solution to have the form

YEYe tYitYaTys

(3.1.12)

{=¥o+%\+% *% .

The functions Yo and fo describe the deflections and

stresses in the field. The functions ¥y and fl describe the



-22-

additional deflection and stresses in the region including the valley
@ and are negligible in the rest of the region. Similarly y,, fp,

y3 » and f3 are functions which are nonnegligible only near ridges

and respectively.

3.2. Solution Near a Valley

Consider first the solution near and including the valley @ .
In this region the only nonnegligible functions are y,, ¥y;, fo, and
f, . The functions Yy; and f; are expanded in a power series in & .
Since ¥y and fl represent the boundary layer portion of the solution
near @ the independent coordinate normal to the valley is stretched

to magnify the effect of the boundary layer. Then

Y = Yo (€,0) +2yui¥y o) +Szy.z(5‘70')+“'

(3.2.1)
t "'ﬁ(s,‘") + S'ﬂ\(‘f’;()') +SE_§:|E.("P;0-)+‘ i
in which
p = -%— . ‘ (3.2.2)

The functions y and £ should be solutions to (3.1.11) with

5 equal to zero, that is y and § should satisfy

(P_fwn‘)\fo,gg T 2-F°’§°'Y°/ o ‘*—-FO)QSE(\Vo;o‘d T ‘) =0

]
(3.2.3)

Yogr ~Yosgsl Yoroo ¥ )=0.
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The original shape of the shell in terms of dimensionless

variables is given by the expression

Y =—a, +L ot (3.2.4)

The observed buckled shape seems to consist of a sequence of
planes joined together at the ridges and valleys. However, equilibrium
considerations (Appendix B) imply that some curvature in the circum-
ferential direction is necessary. A null value for k also does not
lead to boundary layer equations which have solutions which decay as
the coordinate normal to the boundary increases. For these reasons the
final shape in the field is assumed to retair some curvature in the ¢

direction and vary linearly with ¢ , that is,

Y+yo =-d4 +% ko-z-z(o«ﬁo(s—o(‘,)%‘—]!i\ (3.2.5)
= (ot =te) = (1=Kl 2oty 1=ty ) |
Yo= (o =0ta) = 7 (1= ko = 2(atd5—ctg ) 5 |€ ] - (3.2.6)

The initial stress state consists only of a compressive axial
stress field equal in magnitude to the applied stress. In the buckled
state the load may be expected to be carried alsc in the ridges and
valleys, the ridges carrying compressive loads the valleys tensile loads.
If this is the case for equilibrium in the radial direction along a
valley, the.stress in the field must be tensile. (Appendix B) Therefore

let



2

% =(l+m)%°-—- (3.2.7)

in which m 1is an as yet unknown parameter such that m = O means that
the total stress in the buckled state in the field vanishes.

The functions y, and f, as given in (3.2.6) and (3.2.7)
satisfy Equations (3.2.3) except along the line ¢ = O .

Substituting (3.2.1) and (2.2.2) in (3.1.11) and collecting
terms with like powers of ©& as coefficients leads to the following

sets of equations:

XZYN WYY *M§yn|;¢f —kﬁl,uw =0

(3.2.8)
Tveww TRyi,pe =0
anta;ww _mPYmW ‘k{\a;w"ﬁuw Yi v
*Z'Fu,qm‘ymw' ~fi,4¢ Yoo =0 (3.2.9)

2
f\z,ww *‘kyz,w ~“Yiwe tYuwe Yoo = O .

The remaining sets of equations can be written down in a similar way.

For a first approximation consider only

Y=Y +3yn

(3.2.10)

T=1 +8f .
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The functions Yyj,, fll’ must be chosen to satisfy the symmetry
and continuity conditions violated by Yo and fo , and they should decay

as l\lfl increases. Therefore, Y11 satisfies the following conditions:
( Y +Y° + SY” ) continuous at €& = 0O

(Y+Yo+8y\| ))g:O at £ =0

(3.2.11)
(Y + Yo + Sy” ))sg continuous at ¢ = O
(‘Y*yo +3§(u);ggg =0 at £ =0,
In addition symmetry requires that
ux (0,6) =0 (3.2.12)
S\:,g (O,o‘\ =0, (3.2.13)

Since only V¥ derivatives appear in Equation (3.2.8) and

because of the observed buckled shape assume

‘ Yu = Yu (¥)

(3.2.14)

'f\|'= 4al((+0 .
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Then the eguations for Y11 and f,; become

xzi“ﬁ_ pd_’m_ _kii._ -

Jot T dyr T deE T
(3.2.15)
4
ﬁ +kd¥y =0
dy cW/
Two cases must be considered in solving (3.2.15) .
Case 1
2
4k
%?_Em‘Fz_\ > O (3.2.16)

For this case the solution to (3.2.15) is (Appendix D)

b )\Al

Yir = cos ALY +bo Sm %

'F\.\ = ‘?R‘ [(b.-q)bg E)\A‘gos MY +(ba+gby) QXA‘%M AALY > (3.2.17)

t bs“.":l (¢<O)

Y AAY
Vi = bse” Cos AAY + be€ SINAAY

—

~

P ‘)\An - A|
Tu = _?R' [( b3+aobq)e gos A ¥ +(bq-oob3)e>\ s‘!}n,\AﬁP (3.2.18)

+ be¥ | (¥ >O)
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in which

/\|?E'JE? CUDS'%% /quE jfz Slrx%%—

-9 - =
Sin 6=_v,=fgb‘z cos 9= \)TT{Z (3.2.19)

A=k

The solutions to (3.2.15) given in (3.2.17) and (3.2.18) are chosen so
that y11 @nd the boundary layer stresses decay as [¥| increases.
The use of (3.2.11) and (3.2.13) gives the following values

for the constants in (3.2.17) and (3.2.18):

- (BAR-A3 ) +0s =)
b= bs = 2 AN dx 3

b, = ‘b., = - (3/2;—2/;950(21-0\3—0(4” (3.2.20)

bS' =-b, =~ 2mF<zzR:O(3-dﬂp

Thus, to a first approximation,
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= g-ot)-$(1-K) 2 Etdgeta) [o1g) & S

3AlAA2) Az An

Cos NI - sin /\Azl‘?\)]

(3.2.21)

| — ‘AAH ' %_ i
f=‘%(I+M)P0"2'+ mpé?‘z;\'%a ~0lg) 84 {8”9" P Eﬂﬁn :\13

-3 LA‘A-))COS AAq| |- ((BA}\;A') +(3AkAt))sm )\M‘P’}

or in terms of the original variables,
k4

w=(as-aq-sRlI-K)st- <oz+§x3 -a.q) fz\x\+39 Rrad (

At 2 2 1?:" Zl
(3—F\A—)—c ’\—% lx\-@i\z—Alsm’%‘jlx\ﬂ

(3.2.22)

=5 (1 £ om)Ps2r mp‘}i‘;d;}d* SQ{ lxl+e‘§§"x‘[ 3A‘

- QD) e (LA, g AR ]
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The additional stress are

Nyy = 1+m)P

Nis = O (3.2.23)

Nss mPS(O-'A:;QTa‘\»\‘o %% Dd[(ﬂ\*-l cos 8—4 IX\ +(* %’

M2
SN Xl .
The axjial and circumferential displacements can be calculated

by solving Equations (2.15) for Y x o Yss and  u. o+ ug -

\
U, x =Eh ( Nxx‘UNSS )"W;xvv)x"% W/?

Uys = %l_-\ (N s "UNXX)"W,SW;S "JZ'W,ls (3.2.24)

2(1+v
Ux,s+Us;x = _ﬁl Nxs"W;xW/S 'W/xvvls W, Wix -

Since the compatibility of the strains and displacements has
been assured, Equations (3.2.24) can be integrated by using the results
of Equations (3.2.23), (3.2.22) and (2.21). The constants of integra-
tion can be found by making N,. , as calculated from Equation (2.15),
be zero, and then satisfying condition (3.2.12). It is noted that this
condition can be satisfied only in the average; hence the solution is

approximate. The expressions for uy and ug are
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P@a. - z A,
(1+m) P__ZUm @atay—-aqd [’ _ eAWX(CoSAA

wol= gy nER K
~($-25) smdlex)] + e, }S‘% Befx +
L eéﬁsx\:m.—m May _Z_A;/;A‘_A_)_SMAAZ x]
R )
&(3.2.25)
cosBx — & (1+)- E[CA) 1(a,
-l et
Ux (X<O) = =y (x> O)
s = = ) Py o =Pl adid 3N (4 \

CUs){gé“IX\ *( Sm?j\x_/}’s#—gﬁr /
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Case II

2¢o (3.2.26)

)

With the introduction of

s JIJM

5 (3.2.27)
Aq= ‘j_@‘ -4
.E%

the solution to Equation (3.2.15) corresponding to (3.2.17) and (3.2.18)

is
A
i = )\ 3‘P+bae)\Aq‘P
: A 2 AA
-Fl'l =—m [byAq e)\ 39/ aA ¥, b\(‘P] (3.2.28)
¥<O
Az .-
Yo = baef\ T boe™™M?
r_x\_: 2 ~AA9 ~AAd¥
'F\I == 2k b"[A4e <+ b\oA blg.‘/] (3.2.29)

>0 .
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The use of the continuity conditions at ¥ = 0 gives the fol-

lowing values for the constants in (3.2.28) and (3.2.29):

b.=be = 2 Aa (02403 ~0s) A
T 9 Az (A3~ AN Ex

- _—2A3(da+ols=dg)
bs bno = Aq(A;*A:'))\jx (3.2.30)

—4 (da +d3“0‘4§ﬂ
Ix

bl\ = b|2 =

J = Caraa) F kgt Adteaoe g

SAS AW SAT SAAQ#
“ABERNE T AAETEHS

(3.2.31)

£ :%(H—m\ﬁa""i- Sm_PX([:(’aQ:drdAQ[?Mw

4 4
Ag Al A 1kl
AR TRuEA S ]
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or in terms of the original variables

v 2(Ga+Ga-ayg)
- :—Q 1-Qg [lX\—

X

w = (as-a‘,)—;lﬁ(n—k)s

SAA: ~A3y) éJlA (x|
A (As-AY) € tA(Ax A‘oeﬁi‘\"6 ]

(3.2.32)
1 2 . SnPGa+G3=a) I3 2
FeglemPss S L Xl
_?1_{——- AR IX| ____3______ -4]4!‘
A A‘S‘A‘\)e —1} + Aq(,Ag /'\q :I
The additional stresses are
Nx)( ‘=(,I+YV\)F>
Nxs = O (3.2.33)

A P(Gar s =G AR “Meixl A Ad IX|
N = ek A ~ Amas e %’ ]

The displacements in the x and s directions are
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As
Uk 50 = (1+ m)PX " \)Mf:(EQﬁ_L%i GAW‘ reé‘rx\\

‘%Q’x 2] 4(0 % Oa- a«\&kgg__

A‘-A" Adx sd

A'S(A:s A«)(‘ ezﬁ;x) AAW(\ e%fx>

A3 Iy -MAgtAd) A:
(A3+A4\(A3 A ) ( ) 4 A3(A" ‘A Y-
4
- RA\A —2)A
(|-e‘ﬂ;x)+ﬁw(\‘eﬁx ).f /(3.2.3‘*)
k(az‘\'g -Q.4)
R I« (s 1
Ux (X <O) = —Ux (X>0) \

_ _Vu+m)P Mo P(QatGi3 -Ga)d Aqu K|
Us =77 FR S+ SnEh"kix ) AAS ﬁq

— A e‘%’%ﬁ\X\J s+ S /

KA
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3.3. Solution Near a Ridge

Consider the solution to (3.1.11) near the ridge .
Because of the symmetry of the buckled shape, the solution for this
ridge suitably modified is valid for all other ridges.

To consider the ridge , a new reference plane, Ib ,
and a new coordinate system are chosen. The coordinate system is
selected to lie in a plane containing a straight line Jjoining the
points @ and @ in the buckled state and orthogonal to a radius
of the unbuckled cylinder at the midpoint of the line . The co-
ordinates used to describe the solution are taken to lie in I, in
the directions along the ridges and {02 .(Figure 3.1.)

This new reference plane, I, , does not change the form of
the basic equations(33), but the displacement functions are now taken
with respect to né . This change is possible since the number of
circumferential buckles is large and therefore the angle —g— is such
that “—i << 1 . The slope of Tl with respect to I is 2“_n .
This is a sufficient condition that the form of the equations be the
same,

The governing equations are rewritten denoting the new

dependent variasbles by primes and the new independent variables by

a bar whenever confusion might arise. They are

r / A .{‘ :]
(3.3.1)

!

4~/ +2 ’ ’ ’ ! Y ! L
V F-Eh (W -wiaws +2wizWes -waWs -wa W) =0
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The initial stress, P , is the same in either I; or I, . The co-
ordinates "X and s are the projections of x and s on I, . X
is an axial coordinate and s a circumferential one.

Again (3.3.1) is put in nondimensional form by using the

following transformations: .

W'z nhY’

W'Ehky’
(3.3.2)

P=oELP
F'z nERE
_%x I
ST ERTT
_X .3 .1
S PR

| (3.3.3)
5 = (e-¢)
X EXZK(@H‘;—\).,

The nondimensional equations are
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%

IR — zfs- / / / ! /N
8 V?'*%P(Ywe*‘z%e@ *Yzce)“‘f’z[{zee(Y*Y)/??

-?H@g(Y'*YI);ef +f,55ly '+Y')/e@] =0

3.3.4)
8164'#- 4“"(y32<>§ ‘Y;’eeY/lee + ZY; eeY;Ie? "Yfee Y;Ieg
"yfee Y/ee) =0
in which
= 2, 3 4 4
=1+ (;%q 1-;%:1) - 4(I'P4)(§a§;—¢3 + Q:“Tg—g)
(3.3.5)

4
+2(3-2,u"+3p")3%§§e1

The coordinate system p , { 1is oriented as shown in Figure
3.2. It should be noted that the coordinates p and { eare orthogonal

only in the special case u=1.

The original shape of the cylinder is again approximsted by
the parabola -

Y'= oz - 405 (- €) +40s (- €Y (3.3.6)
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Figure 3.2. Orientation of the p , t Coordinate System.

in which

2
K
O(Ssr?ﬁ As % %\-,_ ) (Appendix A)  (3.3.7)

By the use of (3.3.3), Equations (3.3.4) become

s Xz%;‘* %fs' —P(Y)’ eet 2)()’9? *Y:’es) =32 0Ys ( 'F;'ee
+2%)08 +F16) -4 Fiee Yiss ~25 e Yies +HseYjed p(3:3:8
=0

=4 4/ 2 / -
VAT -‘LU'[Y,’w ~YieeYig¢ —Bds (Y»'Pe +2Y)e8 +Y 1'59) 0.



-39-

As in the solution for the region including the valley (::)
the functions y} and f' are taken to be the sum of two terms, the
first term being the solution in the field and the other representing
the boundary layer.‘ The boundary layer term is expanded in a power
series in © and the independent variable { 1is stretched to magnify

the effect of the boundary layer. Iet

Y =y (eS) +3Yz.(e,vy)+825¢2(@,rz)+..‘ '

| (3.3.9)
'~ 'Fol(@;f) "‘3%\(6’;9)* 82422(6'7)*'“'
" in which
‘f/’% - . (3.3.19)

The functions- yél and~ f4 correspond to y, and f, ; they
differ in that y4 and f} are taker with respect to M . y5 and
£y satisfy (3.3.8) with & = 0, in view of the preceding results this

mplies
Y == + (a0l ~0la)(©+ )= (oa + oy~ 4ts)o - €)
 (da-dot -6 (e

Yo = ‘°‘:z; (o3 +°<3;0<4\((a+‘<3)+(cxﬁo(a-zaq +4oisYp-€) »(3.3.11)

+ (0lq ~4ols)( o~ (€<0

fo = (I+m\%§.‘; (e-C) .
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Substituting (3.3.9) and (3.1.11) in (3.3.8) and collecting
terms with like powers of & as coefficients leads to the following

sets of equations (only the first two sets of equations are given):

2 _= -—
et gogg = PYa'm*? -k anm? =0

(3.3.12)
To7999 + K yaygy = O
2 -B - (1—p?)
¥ Ya2,0990 _mPY”w“)? - khit*)‘? '4){7——(755-2) Ya, 0999
+ ZVJS P w4P0( ‘F | (
(g YUY T (jep e 2her T e
Z‘F:u,e\y\{au(a\y +£t;(JpYzo,vq + 99 \{::s,@@)fo (3.3.13)
(1=+") . s
‘F"“)")‘?")V*k}'“ﬂﬂ - 4¥° ( ﬂ"P‘?/V (,.,.,Ji)T’Yau@V
(v )=0
YO+ \Y2ue9 =~ Yai,eeYa gy ) =
in which
z.
s
M = 2%) =
I+
( /Jﬂ (3.3.1%)

_E = ESﬁchxq
(1+p4%
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It is easily shown (Appendix A) that

= (3.3.15)
k . .3.15

Jr%§|

Again as in the solution for the valley (::), as a first
approximation, take only the first two terms in (3,3,9), and let Yo1

and fp; be functions only of 17 , that is

Y'=ye +8yz )

, (3.3.16)
4: = {; *'S:¥2\QQ) )
The governing equations for y,, and fpy thus become
3%~ 5dY% 7 &
X E§Q§4 - P 0= -k 7= =0
(3.3.17)
d“%l T szu

Because of the similarity between (3.3.17) and (3.2.15), a solution of

(3.3.17) is
Case I

3 =P - >0 (3.3.18)



oo
Yar = b;3€>\A'YZCOS XAl‘? + blq QAA'VSIH 7\sz7
P : N
'F:u = "?‘E[(bus -Ct)bm)e>~ VC—OS-XA:.V] + (bm‘f%bn) (3.3.19)

GM'YS?M'XM; + bm‘]]

<0
Y = blse:XA‘VCOS-):sz + btbé,\A‘S\"qlh /‘\Az‘?

= mP | :;A'v h) (3.3.20)
'{:2\ = E’R [( b|s*¢bb|b\e Cos AALY) -l—(bn,-%b‘g) 3

=2A -
c 'gm AA * btaﬂ.]

| >0

in which
A\ =v/2 cos% A, =2 Sln% |
coy © Eﬁ:{z ) Sin 6 Eﬁ? (3.3.21)

A'—.‘-A_%?'
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The continuity and symmetry conditions at the ridge are

(Yl“'Y’) continuous at f = 0

(y'+Y)x =0 at £ =0
/ (3.3.22)
(Y""Y},ﬂ continuous at £ =0
(\/'+Yl);ﬁx=0 at =0
1
‘F)')'( =0 at =0 . (3.3.23)

The use of (3.3.22) and (3.3.33) to find the unknown constants

in (3.3.19) and (3.3.20) leads to

L (RASAYGatdy-ds)
bsy=bs = A 03~

(3A3 —AT) (0 +dy -ols)
bnq“hu‘ EAZX A (3.3.24)

b\‘l :_b|8 = 4(0(2“"0(3"0(4\ :



T

tols—oa)  =AA(GARA) ,
%‘%ﬂe [—A— oSNl 3A2A)Slh)\A1‘V]]

—m Pl +d Ml -A
= mP(d-st ) {BM |+e Y?[ GA' 1) (3.3.25)

4k

A o) - (AT oL AS) WAl

The functions y' and f' are

g = =0l o 43 (e )= (G ot~ 5l X@-E)

+(O(q-4ds\(@'§)z+ S(dg:xdg d(h -)\A V[QOA’ ) (3.3.26)
cO«;,"&A:_n—‘f—A—‘A"‘z ysmAsz;] (>0)

YI =_dz _(da +o{3 ~O(4‘)((-3+ ?)+(d;+ q3-2d+‘f‘4d5\(@-€)
Hde=doks)(p—CF &(a)jxaya.ﬂ (}AW[@%&) (3.3.27)

(3Az-A")

Cos XA + snkAn ] (8<o)
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' (e PES 2 _ Sen(datolz-dy) Al
‘F‘—gjris(e'g) -T-XLJ{BM |+e [

( (2A,~A3) (3A1~A.

L A
T CB ))COS )\Az‘V)‘-<(3A2—f’)

(3.3.28)

GAATY. -~ T
+Q—A fin )\A2M|J§ .

Equations (3.3.26), (3.3.27), and (3.3.28) can be written in

terms of the original variables as follows:

W/ ==Q;,— (a.z +Q3“U4XH' )+2(az+03—26«+4as)%

+4(Gq- Gs)g S(Gﬂ'as-uq) z?"'e (3/\; Ax

Sl
-

Mao  GAS-AD L TAL S
oS T)‘@ <+ A ]

(+\m)E $(0ata3-a)d (83 _ ‘éA (3A Az)
= St Rk {396 I

-q oo (A (A ) ]

§>0.
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w'=-a,+2(a,+a ‘CUJH'Y V-2 +0a-4a )5' 4( )S—L
3 Ix at+G3 s)gs * GqGslg*

+S(022-+X03-04\ éghf[ SA\-A;) XAzg“'(&Z\A‘l ASA‘(ﬂ
e /o (en)Ps® | §n}ig?:\+a§—a4wz {Bs‘gg, _e_%'?[

((3A‘\-fﬁ %(3,«, .)) gg_ (('SA:-Al)

&3.3.30)

- A s e] |

e <0

The stresses are found again by differentiating the stress

function, namely,

N&. = F,/'SS a (1+m) P- mpéi‘;saal\a*\’\’q Q)B’A m[(* +4

(3.3.31)

cos ’\-g-’l ¢+ (&, - %) sin AA‘\ ¢l ]
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y
oo - SRR ke )

Cos %—‘lﬁ\ (R~ i\sm pLy f)}

(3.3.31)

=Fln = DEGRaalll WIS, 4

cos 38l + (5.~ ) sin 2ig| ]

The components of the additional stress in the p and ¢ directions

are also of interest. They are

LU+MIP (140 mP(Ca+Ga-Ga) RLE 2R €)
Nep = (I+p3) — Spklx,&nl”f ; zs-

[(7{'&%; cos A‘l$\+ ; -%) smAA‘lﬂ]

3.3.32)

! plrm)P
NCP‘ (1 +/%)

/ _ (+m)P
Nee = (1++%) -
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Nép is the normal stress resultant directed in the p direction. N&Q
is a norma.l‘ stress resultant orthogonal to the ridge . N'Cp is a
shear stress resultant in the plane of the ridge

The displacement components uQ and up could now be calculated.
As in the solution for the valley (Ig} , it is not possible to make the

displacement u, zero everywhere along the ridge. These quantities do

g

not add significantly to the solution and are not presented.

Case II
2, %
e 4){11_;51__\ (o (3.3.33)
m
Let
¥’k

497. = \_ml_P_L - _%L (3-3-31")
then

Yai = bq € 74 bzo ek&‘? \

2 )\AM Py A v '
L=~ ( bqu / + Bao Al ,/\A<; /-f-b,;.;, (./,) (3.3.35)
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Yo = b€ by
.5 A _
fa = _Y‘;RE [ by A:Q 3‘7'*' baa A§ QI\A*Y?“' b2 \7] (3.3.36)

Y7 >0.

The use of the symmetry and continuity conditions to

evaluate the constants as in Case I gives

be=b =-2A:(°{2+d3-d1)
19~ “2i -XAg(A‘;'A:)

bae = _ 245 (da+diz-oly)

a3 = —>\A4<A§._A;_) (3.3.37)

bay = bag = 4(0(14-0(3-014) .

Thus the functions y' and f' are
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y'= =dlz = (da vdz - d)(+ § )+ (da+alz~ 204 +4dds ) (@~ 8)

28(0(:1+d d) AA
+ (g = 4ols)(p- ) — S [Aa(ArA:)e 7
As DA
—A“?A}Aﬂ € W:‘ (3.3.38)

q
_(: (H’ﬁﬂpﬂi ( g) + SmP( atola—dls) [2‘;\7 + : A3-A:')

- 4
/\As‘f? A AAq
€ Aar) € ﬂ

XN /

\!' = - O(Q '\'(da +d3—dq)<@+ ?)-(o(g+d3 -4015')<@‘€)

+(cq=4dls)(p-€) - M)[TATA_ M9\ (3.3.39)
q

A —AA-M
A«rZAa‘M) 1

st
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_{\l (|+M)P,Qs( €)7- Smp(dri-dg d‘\) rz)\v AA4

_i* 1(AT-A3)

AN AL -JA
& + ;’éﬁm)e m] (3.3.39)

0.

Equations (3.3.38) and (3.3.39), are written in terms of the original

variables;

w'= =02 = 2(0a+0a —qu\(\*i\ +2(C\a+a3"2a4+4a5)]§-§-

l

ralas-dan) fp - BlgamaO A, A<

_A A
/AH?A;‘A:) € A:é 6]

'_;(\_*___-ES- SmP(0atGz-ai* [ 24
F= S+ e i

(3.3.40)

e A
¥ i € ¥
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w' = -Q, +2(03+Gr -C(A(H%x) —2(Q;+Q3—4Qs)i

5° § (Ga+Gz-aq), =)
rd(aq-4as)fp - B [AS(A:s A«)Q%‘%e

P, £

(3.3.5)
=2 (l_Jr_r;_)_sz-- . S?E(§;+a3—a431‘ [_ Z:SX e
A;(A3 Ao (A-AT) Q%JC AqA “A%) ebeq ]
e 50 .

The additional stress are

—

4
L Plaa+aa- CLO}\,QZ[ Az A4 —AA:L|§|
N;?& =(+m)P+ S knh (2 AT_AT e s

AA gl
= Ry S ]

3.3.42)

Nz =5 [ Na = (4m)P]

% [N;'x - (+m)P]

ya
ars
[



3.4, Equilibrium Considerations

The force in the shell consists of that in the boundary layers

and that in the field. The axial force in a ridge is

2
o R -

while the circumferential force in a valley is

o

Tv = 2£ F\uxxd?( = ﬁﬁil\-kk\mp . (3.4.2)

The total external load must be equilibrated by the internal

force in the shell. Therefore

—2NRP = 2MRU+m)P — 2“”\5“"“‘“‘*" (3.5.3)

or

e —7k - (3.4.4%)

A plot of m versus k 1is shown in Figure 3.3. Note that if
m is to be positive then k must be less than one half.

The circumferential and axial equilibrium at a juncture of
valleys and ridges is obvious from the symmetry of the deformed shell. The
radial equilibrium equation at a joint is satisfied identically by the
stresses found and therefore does not give any new information about the

shell.
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Figure 3.3. Relationship Between m and k for Equilibrium

for a Force Prescribed Buckled State.



CHAPTER IV

RESULTS

The results of this work consist of mathematical
expressions fo£ the deformations and stresses for a buckled panel
of a cylindrical shell. The mathematical expressions and typical
graphical representations of them are presented here.

The final buckled shape for the region of the buckled
panel which includes a valley is

Wew =ﬂ_2£ 22 rr(:—k) m(-k) ~tAJX|
R g K- e

[(-—3A' As 1&\?‘-(%&sm +A2|)?|] (g>0) (v.2)

Wiw _ L'L_\_'S( ) - TT(' k)l (|~ -k [ As —TM)/(\(
nh Zg 291’ Aﬁ(A3 A4)e
_,_A\;____ "V\’;’Xl:l .
AL (RS Ay) © (g<0) )
in which
Lo 2X _ [ PR
X = é}; A= JT q Ezk)
2 o2 - i .
5 = ds AQ——\}' - (‘_lk) (4.3)
_rh 2P | [ (kv
4R Az_j(l—zkh]l -7
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The coordinates ;:\ and /5 are chosen for convenience in
displaying the results graphically.

Figure 4.1 shows the buckled shape for an axial section
through the panel at ,s\ = 0.

Figure 4.2 shows how the equilibrium configuration changes
as a function of the applied axial load.

Figure 4.3 shows how the equilibrium configuration changes
as a function of the curvature remaining in the field.

It should be noted that for all of the results shown in
Figures 4.1, 4.2 and 4.3, the wavyness of the mathematical solution
is not evident because of its relatively long wave length. This is
significant since no wavyness has been noted experimentally.

The final buckled shape for a region of the buckled panel
which includes a ridge is

\A/' ! 2/, .
n"l:v = Al é‘%k\g(@f f)—a-Q(@-E) +z_(k:T<\(<'>"€)L

(e -C%F,;z\A@[(3AT-A§)
Tt € Al
- (‘3_'6'1%‘) Slh(‘z—,:} z)Aag]} (e >D)

k))( €)1y (-8)°

CosBlyALE k)

Wiw’  T31-k)
nh 2% 5 €>+ U
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L ) FAS (A | ot
oA izAl

4.1. COS(I"’I‘JZ) Azg
(3A=AT)
A i A;é’] (§ee) 2
in which
X s 1 _X_S L
@—ﬂxi-ﬂs*z szx—ﬂu—z. (4.6)

Figure 4.4 shows the final buckled shape for a section at

p =20
The circumferential stress in a valley is given by the
expressions
Ns 'f(l _+A' |X\
e Zpiz(?ﬁm [pﬁ'%‘- cos tA.lk]
| A
+ (Kz‘%“\ sSin ‘fAlel] (%Z >0) (%.7)
Nss_ t(-K) P [ AsAL é‘fA«lﬂ oy é*Asb?E) (4.8)
R~ 402k RLAT-AS A3 -AS - '
(g <0)
Similarly the total stress resultent directed along the ridge is
NeotNee | _ ~°kP +(-K)P w#,z;l?(
( B ) G+ (12 KR ~ 4rl0r €

[(JA-\ %\E)COSCH,P Ie!'f'(,ﬁg A‘)S\V\U‘h‘})\e\ (4.9)

N
Figures 4.5 and 4.6 show how 1—3§—§- varies with ;c\ and how

E
the load parameter P/P affects this stress distribution.

Figure 4.7 shows how ?m varies with (.
E
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The axial tensile stress in the field is given by the

expression
NPy _ k P
( = ) = (-2k) B * (&.10)

The significant result here is that if k is significantly
less than 1/2, the tensile stress in the field will be smell (e.g.,
for k = .10, gE = ,50 , the tensile stress in the field is only
.0625 PE).

The axial displacement u, can not be made continuous
along the valley and the displacement normal to the ridge can not be
made continuous at the ridge using the approximations employed herein.
A plot of ux/h along a valley indicates the extent to which the con-
tinuity condition at the valley is violated, (Figure 4.8). The
magnitude of this discrepancy decreases as k decreases.

The mathematical expressions other than those listed above
which were found in this investigation are as follows:

For the region including a valley,

Ug - 2M¥(=KIP vy (I—k)P ~tAX | A
_\‘I\L n(-2k) R N""U-’lKTpE —c (COS TAx X

L A 3(1-k)? ~1AX
(% -7¢)sm A R) -%%cgﬁﬁ*éljre I

(3A A A (3AL-AY) —2tAX
A| 3 asTAlx-——i;—__ +A2X]+8T |
UAZ_E_C%L QASm 1A ‘(A'J’Zﬁ\bz —%\z)Cos AKX
1 a2
_%'(H%Lz_)]—le @—IPT})—ZI-L(A"'.Z%"%L) (4.11)

I (=), A2
I TERE D oo
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gh—x (x<o) =‘%f(>? >0) (4.12)
Us  2mo¥(-k)P & . M-k P =tAKIf/L g
h  nl-2klR S+ 2 AN (12K)R [(A‘+Az)

cos TAX) + (‘Az )sm*fA \X\]S +

(1=K 23 .
Eé—g—- S (% > O)
_ 2me¥-K\P ¢ & Toyl- k) P [2 —TA,,X
n (1-2k) &} ZPHU—zk)F%

Fa___““\zx TU-K( ¢, 2As
AR ] Brg {X+TA3(A§-A§\("’

e L S B
TAqAs-AT) TlAs+ A\ (AT A

‘ -1 (A3 +A<l\?< A4 ~21As Q
(i-e )+ FArA A )

_A______ 2tAX\)  TPK(1K A2 .
+ zia A - € )g+ 42% Ut (g<0)
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Nis= O .

For a region including a ridge,

1

Neg _ (I-K)P
B T (1+pA0-2k) Fe

/
Nee _ p (1-K)P
R~ (1+3)1-2k) R

(4.16)

(k.17)

(4.18)



CHAPTER V

CONCLUSIONS

The solution, presented in this work, to the problem of
finding an equilibrium configuration for a buckled cylindrical shell
is not exact, since the axial displacement can not be made continuous
within the approximations used in the analysis (Figure 4.8). The
effects of the interactions between the ridges and valleys of the
buckled shape were also not considered. However, the nature of the
results seems to indicate that this is a reasonsble approximation
to the theoretical determination of the postbuckled state of the
shell.

The solution was carried out by assuming some residual
curvature in the field of the buckled state. There is little
experimental evidence to indicate that the buckles are not flat,.

The results howevef indicate that very little curvature is necessary
in the buckled state; the experimental evidence is therefore incon-

clusive (Figure 4.1). The amount of the discontinuity in the axial

displacement decreases as the buckle becomes flatter (Figure 4.8).

Comparing the experimental buckled shape with the theoretical
shape is further complicated by the fact that when buckling has pro-
gressed to the point where the valleys and ridges are sharply defined,
the shell material will have yielded and the effects of having a

nonelastic material will become apparent.
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An improvement in the solution could conceivably be
obtained by considering higher order terms in the expansions of
the boundary layer functions. Another possibility would be to
consider the field stress to be nonuniform. The curvature necessary
for the boundary layer might also be considered to be inherent in
the boundary layer rather than the field. These observations are
speculation and no proof that they will work is availlable.

One interesting result of this investigation is the fact
that the no unique equilibrium load was found, since many buckled
configurations are possible for the same external load (i.e., Many
values of k are possible (Figure 4.3)).

This work sheds no light on the problem of how the shell
departs from the prebuckled state. However, it has shown that a
buckled equilibrium configuration which resembles quite well the
buckled shell can be found analytically and that the axial load
necessary for equilibrium is significantly less than the buckling

load. This agrees with the experimental work on this problem.



APPENDIX A

GEOMETRIC RELATIONS FOR THE BUCKLED SHELL

The relations between the shell deformation parsmeters
8oy 83, 8y, 85, 1 and k and the natural shell parameters R and
h are developed in this appendix.
The deformation in the field is assumed to be inextensiable,

therefore

X = k% {A-1)

0s = = A-2
alc s a ( )

2
For large n %&' is negligible when compared with 1, therefore

Other geometric relationships are

- T _
8y + 8z = R(1 - cos E) (A-k4)
R/k sinXx = (R + ay) sin% (A-5)
a, = R/k (1 - cosX) , (A-6)

a, 1is found by substituting (A-2) in (A-5) to give

a, = -E— sink & cot-‘;l -Rcosi—. (A-T7)
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Figure A-1. Geometry of a Buckled Panel.

Figure A-2. Geometry of a Buckled Panel.
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8 is now calculated using (A-7) and (A-4), this gives

ay = R(l--J; sink XL cotl), (A-8)
3 k
n n
Again as in Equation (A-3) the assumption of g a small angle leads
to
an 2
8.2\‘:8—1;2- (l-k) (A-9)
2
a5 = 22 (2 - %) (A-10)
6n
2
a = XR x| (A-11)
4 on?

It follows from the geometry of the shell that

(R + a,) cos gﬁ = R+a; -8 . (A-12)

In line with the approximations being employed as is found to be

n2R
8-5 o gn—z (A"lB)

The following combinations appear in the text:

2 2
xR 7 nh
- e~ 1-k)(2-%k) = 1-k)(2-k A-14
as - oy, &~ 55 (1~ K)(2 - X) 2t (1= x)(2-%) (A1)
ay + az - g, = ﬁg (1 -k) = x°nh (1 - k) (A-15)
=" 73 on 2
i el S S GRS (A-16)
y) kel

X
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2 2
“ha, = ER(1.x) = ZBR (g o A-1
8), &g E;g ( ) o ( ) (A-17)
2
- h- = ﬂER - = 1“nh - -
By + 85 - 283y + lag - (1 - k) . (L-k) (A-18)
8y + 85 - ha5 = 0, (4-19)

Another useful relationship which has been used in the text

is

(A-20)

= 181
1]
@iy
E
=
il
oI
~
no
f
~
B |-
D‘v
7~
)]
%] f=]
P
o
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APPENDIX B

EQUILIBRIUM CONSIDERATIONS

If the limiting case of an extremely thin shell is con-
sidered so that in the buckled shape the ridges and valleys are
lines, it can be shown thet the field must have a tensile stress.

Consider the equilibrium of avalley in the 2z direction.
Let Tv , the force in the valley, be tensile, then if the final
shape of the valley has some curvature, as has been assumed, &

component of this force\in the positive =z direction will exist.

< 9: >
[‘ , mP ']
{

T

Figure B-1. Equilibrium of a Valley.

The 2z component of the force in a valley 1s

Tz = v B(V\g;W) l s:i% <o (B-1)
Tvz = I%RM‘" . (B-2)
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The only way that this valley could be in equilibrium is
for an axial tensile stress to exist in the field. If this stress
i1s assumed to be uniform, then the 2z component of the force in

the field is
Trz = mPls 2w (8-3)

Tez = Z—E‘f(m +G3 ~Cua) . (B-4)

or

An equilibrium requirement is that the resulting force in
the 2z direction equal to zero. That is,

2T, = 2Ty, = O . (B-4)

If follows from (B-2), (B-4) and (B-5) that

T, = ﬂﬁ%ﬁ;ﬁ@g. (B-6)

If the force Tv is compressive then the field stress 1s also
compressive.

In contrast if the equilibrium of a ridge is considered in
the same way the conclusion is that for a tensile axial stress in the

field the force in the ridge is compressive.

Ik
s

mP

ER.R

Figure B-2. Equilibrium of a Ridge.
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The 2z component of the force in a ridge is

T dWew) . 2 T 204
Tre =k 56 Tyes T Lot (5-1)

The 2z component of the force in the field is

Top =P 3l y o mEssdazadd )

Again since there are two ends and two sides to the ridge

2mP(Oa+83-aq) _ _2TrC4
z - fyes (9)

I...
T = an)ﬁlf‘/:’;\( KYrm P | (5.10)

or

It should be noted that the Equation (B-6) agrees with
Equation (3.4.2) and if the x component of (B-10) were to be found
it would be the same as (3.4.1).

Since a compressive external load is being considered the
forces in the ridges should be compressive; this leads to the conclusion
that a tensile field stress must exist.

It is important to note, at this point, that the conclusion
that a tensile stress in the field must exist can also be drawn on
less physical grounds. A negative value of m does not allow for a
buckled shape which closely resembles the observed shape since solu-
tions to the boundary layer equations for negative m +to not decay:

as the coordinate normal to the boundary increases.




APPENDIX C

EXPERIMENTAL RESULTS

To demonstrate the validity of the assumption that in

3
the buckled state E§E is near one in value, typical experimental

2
results are quoted. For comparison -I—IP—E is also calculated.

o) 2

Investigator n R/h -Ilﬁ}i nT}x
Tennyson (31) 6 154 1.40 .23
Lundquist (7) 9-10 333362 2.01-3.33 .224-.33

10 455 460 2.2 .22

10-13 625-71h 1.4-3.5 A, 27

11 679-757 1.7-2.0 .16-.18

11-13 909-920 1.4h-2.4 .13-.19

12-15  1270-1k15 1.2-2.7 .10-.18
Donnell (17) 10 483 2.1 .21

12 1284 1.3 A1

10.5 1383 .8u .08

8 314 1.6 .20

10 897 1.1 Jd1
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APPENDIX D

SOLUTION COF THE BOUNDARY IAYER EQUATIONS

The solution of Equation (3.2.15) is presented in this

Appendix. Equation (3.2.15) is

2dve _ mdv | d¥ .
de mP e kdw_—O
d £ CF\“
dgt TR Jye =
Let
A
Yn=Cr

(p-1)

i=1,2, 3 ... 8 (D-2)

4%\ = Cﬁi éf\‘?v

The substitution of (D-2) in (D-1) leads to
a4 2 Nz
(YA — P — dikA; =0

C;k//\i +dx&3 =0,

(D-3)

(D-4)

For a nontrivial solution to (D-3) and (D-4) to exist

NP +K) =0

The roots ii

decaying solutions but with polynomial solutions.

-79-

(D-5)

= 0 are not associated with exponentially

These polynomial



-80-

solutions must be rejected for Y1 since all solutions must

decay as |y| increases. A polynomial of first order will not

effect the stresses and can be retained. Such a solution will

be necessary to satisfy the condition that f,t be zero at ¢ = O.
The four roots to (D-5) which give rise to exponential

solutions are

A P 2y 2
Nt Y e s (0-6)
Case I
43k
m—¢,—z > (D-7)
Let
¥k
§=eprl - g0 -8
Then
3\ -+ DO_F | +
4 =< zxz - ,{,% . (D-9)

To facilitate the solution the following parsmeters are defined:

sine = —3
Jl+?
1
cos@ = —
J1+q§ ‘ (D-10)
r = Jk/2y

t\):> >
n il
o no
)] Q
5 8
l© |0
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The use of (D-10) allows the roots (D-9) to be expressed as

AN

o = -MA; + 1A,)
’13 = Ma, - 1A))
/N

N, = -Ma; - 145) |

The general solution is
A A

A S A ¢

y..=C\€ +C,E 1+C3€ 341+qu>\4 .

The substitution of (D-12) in (D-3) leads to

4, = g—r]z(-l+iq) C1
d, = g—E(-1+ iq) C,
4y = I2—1’2(-1-1(:1) Cy
8 - () - 1q) g,

Thus the solution for fll

= o~ ~
£ [o i rig e rcal-1vige™

+C3(-\-xcb)é/\\3q}+ Cal- -l%\e)ww] ‘

The real parts of (D-12) and (D-1k4) are
MY MY
Vi =bi € Cos MW +bE Sin AAY

"Af\‘* - /\ﬁf
'\'bse lCZOS AAz ¥ +b4€’\ SIn AAL ¥

(D-11)

(D-12)

(p-13)

(D-14)

(D-15)
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mP MW ,
fi=-3K [(h-%ba)e cos Ma +(ba+gb) & sfn A Y
"P (D-16)
Hog T el Kbs Ay +(bq—cbbb>e SInAAY ]

A linear function of ¥ 1s added to f to allow condition (3.2.13)

11
to be satisfied. This gives for the solution

Y = b|e)\Ag05 May + bge)\A'S‘ﬁﬂ MNALF
f - ZKFT_b\ %ba)éACoSAAaW+ bg*%b)@ S\T\/\Aaq’ (D-17)
+bs¥] (¥<0)

DAY
= bse Cos AalY +b4e sfn AR

“CH -5 [ b3+%b4)€ s Ay +(bs- -G ba) (p-18)

A
EMn Mb ] . (WO
Case IT
k"
%5’2 <| (D-19)
Iet
. k-
’P = \_j“—-;-%,_ ] (D-20)
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Then

/5\A @m : (D-21)
Let

Ay =N1+p , 4 =V1-p . (p-22)

The use of (D-22) allows the roots to be expressed as

= A A5
N
RE = =X A
R > (p-23)
)3 = A Au
A
lh = =X Au

The general solution for y;, 1is given by (D-12). The solution for
f11 1is found by substituting (D-12) in (D-3) and using the relations

for Case II. This leads to

mP 2
dl = = EE Ahcl
) 2
a = - % AC,
& 2 (D-24)
d.3 = - -2—k A5C3
mP 2
d.)+ = - Ek?‘ AECL"
therefore the solution for fll is
P2 MY MY /\Aq Mg
‘F\\ Zk (A1C| chze + AS 3 3C4€ ) D-25)



-8l

The renaming of the constants of integration and the addition of &

linear function to f;7 gives

As ¥
Vo = b+ by ™™

§u= =5 (b beasd™ s byy) (0-26)
$<0

~Mz¢ ‘>\Aq""
YH = bqe + b\oe,

GOV ¢ )

'FH == rzl}g ( bq A: é)\ASW_*_ bfo A3e + biz ' (D-27)

¥ >0.
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